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Solution of a statistical mechanics model for pulse formation in lasers
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We present a rigorous statistical-mechanics theory of nonlinear many mode laser systems. An important
example is the passively mode-locked laser that promotes pulse operation when a saturable absorber is placed
in the cavity. It was shown by Gordon and Fiscliehys. Rev. Lett.89, 103901(2002)] that pulse formation
is a first-order phase transition of spontaneous ordering of modes in an effective “thermodynamic” system, in
which intracavity noise level is the effective temperature. In this paper we present a rigorous solution of a
model of passive mode locking. We show that the thermodynamics depends on a single parameter, and
calculate exactly the mode-locking point. We find the phase diagram and calculate statistical quantities, in-
cluding the dependence of the intracavity power on the gain saturation function, and finite size corrections near
the transition point. We show that the thermodynamics is independent of the gain saturation mechanism and
that it is correctly reproduced by a mean field calculation. The outcome is a new solvable statistical mechanics
system with an unstable self-interaction accompanied by a natural global power constraint, and an exact
description of an important many mode laser system.
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[. INTRODUCTION teraction between the modes, as does the Kerr effect, with
the difference that it is dissipative rather than dispersive.
The dynamics of a laser is always subject to noise. Beside
Yhe usual noise sources present in every physical system,
there is the inevitable fundamental noise of spontaneous
@mission. This noise is inherent in lasers, since it always
; X ﬁccompanies coherent amplification, on which lasers rely.
or about two light-wave cycles. In a mode-locked operation;,qrefore a model of a laser that does not take noise properly
many axial modes Ina broad frequency bandwu_jth are ph.aﬁﬁto account risks missing key features in the physics of a
chked and thus prowde one or muIypIe pulses in the C_aV'tygaser system.
giving at .t.he output a I|g'ht pulse train. The understandmgp The majority of laser theories treat noise as a perturbation,
the conditions under which a laser operates in pulsed regime at all, expecting it to manifest itself as fluctuations in the

rather than in continuous wave regime is a question of greghqo, o 1hut. However, this approach greatly underestimates

interest, both theoretical and practical. This question ha?he effect of noise. It has been recently shdA] that even
been addressed in various studies, being referred to as “t%r weak nois cbm ared to the intracavity power of the
second threshold(the first one being the lasing itsglh the Y & P Y P

i 5 q . in th £l ith lasep is sufficient, for example, to destabilize a passively
earlier year42—4], an recently, In the (;onfext of laser with )5 de-locked laser, revealing a dramatic nonperturbative ef-
a saturable absorber, as the “self-starting” prob[&ril2].

. ) , . : fect of the noise.

Formation of pulses in lasers relies on the interaction be- We have recently developdd4,15 a new approach for
t\r/]veeg axm(lj m_odesh. Such an |.ntergct|on can (;)e| prowded e many interacting mode system, with specific emphasis on
ther by rendering the system time dependembdulating or aspects of pulse formation in mode-locked lasers. We estab-

by a suitable nonlinearity in the dynamics of the SfyStem'I'shed an analogy between the behavior of the electromag-
These two methods are commonly referred to as “active” an etic field (the mode system in a lagein the presence of

_passive mode-locking, respectively. Qne_ type of nonllnear'noise and equilibrium statistical mechanics, and applied the
ity known to encourage pulsed operation is saturable absorgy, e fy| tools of statistical mechanics to the problem of
tion. The I'ght transmissivity through. das) saturabile ab- mode locking. In particular it was found that the entropy
sorber is arincreasingfunction of the(instantaneoysinput  asqqciated with the noise is an essential ingredient in the

'fieory of mode locking. This approach gave an inherent ex-
‘planation for many experimental phenomena of mode-locked
sers, especially the existence of a threshold and the abrupt-
ness of formation of pulses. Passive mode locking was iden-
tified with a first-order phase transition in the model statisti-
cal mechanics system. Many other theoretical and

Lasers can produce light in continuous wag@v) or
pulsed manners. A special pulsed operation is mode-lockin
found shortly after the laser discovery in the early 1980s
Since then, mode-locked lasers became a leading way to pr
duce ultra short pulses reaching today a few femtosecond

tion into configurations where most of the power is concen
trated in short pulses. In the frequency or mode domain th
saturable absorber induces a nonlinear four-wave-mixing in

*Electronic address: omri@physics.technion.ac.il experimental featurefdl 6] were found, among them, hyster-
"Electronic address: gariel@tx.technion.ac.il esis, superheating and supercooling, successive formation of
*Electronic address: fischer@ee.technion.ac.il multiple pulses in the cavity and more.
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Reference14] introduced a theoretical model of a pas- squared, and divided by the noise strength, and the transition
sively mode locked laser with simplified spectral filtering of occurs when this parameter crosses a threshold value, which
the gain, where the laser modes are restricted to a predefinggk calculate explicitly.
band, and studied it with mean field analysis of the mode As a statistical mechanics problem, the model can be lik-
inte(actio_n induped by the ;at_urable ab_sorber and with nuened to a gas aicomple® spins, with alyl* self-interaction,
merical simulations. These indicated a first order phase trargnd a global constraint of total amplitude, quite similar to the
sition when the effective temperature, i.e., the noise powefonstraint imposed on spins in the Berlin-Kac spherical
or alternatively the intracavity power, is varied. The orderedy,gqe| [20]. Normally the statistical mechanics of such sys-

phase corresponds to a mode locked _configuratiqn, while th@ s leads to simple equipartition. Here, however, the energy
disordered phase corresponds to multimode continuous Way8 iha self-interaction term inegative and at small enough

operation. ; : o .
The present paper re-examine the model of s, {ETPSTAVTE, f O Enotgh pover e Pty stering
slightly modified to make it local in real space, which te. whe t of th 'dy . inal pu |
amounts, as we show here, to a coarse grained description jte, where most of the power resides in a singie spin. in
ourier(mode or wave numbd) representation the model is

the electric field in the laser cavity. We present three ne . ; . - :
main results, which together furnish a thorough analysis ofduivalent to a classical complex spin chain with a special

the theoretical model, showing that it captures the correcfionlocal interaction that drives the mode-locking transition,

thermodynamic picture put forward in Réi.4]. Figure 1 shows the difference between typical mode-locked

The first main result, which is the subject of Sec. Ill, is anand non-mode-locked configurations in Fourier space and in

improved mean field theory, which overcomes some of thdeal space in the context of the coarse grained model dis-
drawbacks in the analysis of R¢L4]. The free energy in the cussed below. _ _ o _

new mean field theory is, unlike previous resuttsactin the While in this work the quartic self-interaction is attributed
thermodynamic limit, where the number of active modestO Saturable absorption, the model can be put into a broader
tends to infinity. The main advantages of the mean fieldOntext. The quartic interaction is of general interest, being
analysis are its simplicity, and its direct description in termsthe lowest-order nonlinearity which is translation, inversion

of physical processes. Still, it relies on uncontrolled approxi-and rotation invariant, and_local. This interaction itself has
mations based on heauristic arguments. been very extensively studied, but we are not aware of pre-

The second main result is an exact rigorous transfer matious statistical-mechanics studies of its interplay with a
trix calculation of the free energy and other thermodynamidonlocal power constraint. In some previous well-known
quantities in inverse powers of the number of active modesstatistical-mechanics studies of lasgg$ this nonlocal con-
This is the subject of Sec. IV. In addition to providing a firm Straint did not exist in the model, which may explain why the
footing to the arguments of Sec. IlI, the transfer matrix cal-mode-locking noise-induced threshold behavior has not been
culation provides results which are valid for a large but finitePréviously found. Since a global limitation of power is com-
number of modes, and are important for comparison witfnon in physical systems, our model may be an important

experiments. prototype in nonlinear optics and elsewhere.
In Sec. V we tackle the subject of gain saturation. It is
well known that the total intracavity power is deterimined by  Il. THE MODELING OF PASSIVE MODE LOCKING

the saturable gain of the amplifigt9]. This fact led[14] to
assume that the intracavity power is fixed once and for all,
and this is the approach taken in Secs. Il and IV here. How- In a nondispersive lossless cavity the electric field at any
ever, the intracavity power can and does depend on the worlgiven point is periodic in time, with the roundtrip time as the
ing conditions of the laser. period. Once the laser amplifier, or other elements such as

The third main result of this paper is to show that there isdispersion and nonlinearities, are introduced, the time depen-
no essential loss of generality in this approach: The thermodence of the electric field is more complicated. Nevertheless,
dynamics, and in particular the question of mode lockingthe change in the electric field between instances separated
depends directly only on the intracavity power and not on thédy the round-trip time is usually small. Therefore, the elec-
details of the gain saturation mechanism. This broadly applitric field is often described by a master equatjdi], which
cable result follows from the statistical physics principle of is an equation for the slow evolution of the electric field at an
equivalence of ensembles, one with fixed power, and onarbitrary reference point inside the cavity between consecu-
with variable power, which may be likened to the canonicaltive round-trip periods.
and grand-canonical ensembles of statistical mechanics, re- An alternative formulation of the master equation, which
spectively. The results of Sec. V also allow for the actualis mathematically equivalent, is obtained by passing to a
calculation of the intracavity power for specific models of frame moving with the group velocity of the optical signal.
gain saturation, again a useful result for the comparison withn this frame the electric field at a poirtinside the cavity at
and design of experiments. time t is expressible a&(x,t)=Rge&“(x,t)], wherew, is

An important corollary of all these results, which is not the frequency of oscillations in the moving frame at the band
self-evident, is that mode locking and pulse properties deeenter, andy is a slowly varying envelope. We assume as
pend on asingledimensionless parameter, the strength of thecustomary that the vector character of the electric field is not
saturable absorption multiplied by the intracavity powerimportant, and treat it as a scalar. The master equation is then

A. The master equation
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FIG. 1. The two “thermodynamic phases:” A typical non-mode-locked configuration is shown on the left-hand column of the figure and
a mode-locked one on the right. The real space configurations of the coarse grained model are shown on the top row Beend(k3)
for definitions. The Fourier modes,, defined in Eq(21), are displayed on the bottom row as a set of phasors, each arrow representing the
complex value of a Fourier mode.

an equation for the temporal evolution of the envelgpe absorption term describes an additional “gain” term which is
_ absent when=0.
dap(x.1) = Gl (D) + n(x.b), 1) The third part models the spectral dependence of the am-

whereG is the functional which represents all physical pro- plifier that has a characteristic frequency, which we assume
cesses that modify the shape of the wave form, anid a lies at the center of the wave packet. Define the Fourier
random term, which models the effects of noise. The cavitXpPansion of the wave packet,
length denoted by and ¢ is defined on the interval €x o
<L with boundary condit_ionsb(o,t):z//(l__,t). _ P = D b(H)e2mmiL (4)

In the context of passive mode locking, the net gain has m=—o

three essential component&=Gg,int+ Gsat Gsp  Stemming : -
from the actions of the saturable gain of the amplifier, theNear the resonance, the pumping efficiency falls down qua-

saturable absorber, and the spectral filtering of the amplifierct,jr]r"’lti(:"’lllty in tfht?] spbect:ja[ dit_;tancfe. The dnet gdati)n for modes off
repsectively. The net pumping of energy by stimulated emis- € center ot the band 1S therefore reduced by
sion is modeled by

Ggain(xrt) =g(P)(x.1), 2

whereP=(1/L)[§| #(x,1)|? dx is the total power in the cav- WheLeVQ is ﬁqsitive._ functional ) g N
ity. The saturable gainfunction g is monotonically decreas- ¢ T € rels(;J ting gain functional can be expressed as the
ing with positive values for smafP and negative for larg®, unctional derivative
Wher_e_ vario_us losses overcome the power supplied by the G(x,t) = = SH[ Y]/ 8¢ (X) (6)
amplifier. It includes losses caused by the saturable absorber
at zero power. of
A necessary ingredient for passive mode locking is satu- L y
rable absorption, wherein the dissipation losdesreaseas Hlyl= | dx| - =[]+ vl (%)
. . o 2 9
the power increases. Unlike the saturable amplifier, the re- 0
sponse of the saturable absorber is fast, so it depends on the 1(t
+ LU(EI [y(x)|? dx),
0

27rm)\?
Gsp(mat) == ')’g(Tm) bm(t), %)

instantaneous power)? rather than on the total powe?.
We choose the specific form of saturable absorption

Gox.t) = x,1)[2p(x 1), 3) with the definitionU’ (P)=-g(P).
s Yl OF In addition to the deterministic gain terms, the laser light
with >0, valid for [#? not too large[17]. Note that since is also subject to the effects of the random noigevhich
losses are already taken into accountGyy, the saturable turn out to be crucial in the context of passive mode locking.

()
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An inherent source of noise is the spontaneous emission Taking N such intervals we find that the functionidl is
from the amplifier. This type of noise is well modeled asreplaced by

white and Gaussian. We will suppose therefore thas a N
complex Gaussian white uncorrelated noise with a covari- ~ _ vk 4_

ance function, Hn(, ) == 50 2 ol - LUP) (D)

(7 () p(x',t")) =2TLAX - X" )8t - t'), (8)  and the intracavity power is expressed by

where(-) stands for an ensemble average. 1
P= 2 il (12

B. The invariant measure "
It is well known [14,2] that the invariant measure of Furthermore, the conclusions of Sec. Il B continue to hold

gradient flow with additive white noise, such as Eb.with ~ with H replaced byH, and the partition function becomes
Eqgs.(6) and(8) is

~ dl// dl/f* =
p[lﬁ] = Z_le_H[‘//]/(LT), (9) ZN = f H #e HN[&]/(LT) . (13)
n

where the partition function is The statistical mechanics problem defined by Eg$)—(13)

X is the main object of study in this paper. At zero temperature,
z :f [dy][dy Je D, (100 which corresponds to noiseless dynamics, the quartic term in

H pushes all the available power into a single degree of
and the notatiofidy] indicates functional integration. Thus, freedom(whose identity depends on the initial conditipns
the study of passive mode locking in a laser with spectrafThis is the mode-locked state. In the opposite situation of
filtering and saturable absorption reduces to the analysis dfigh T or y,=0 the power is randomly distributed, and mode
the statistical mechanics system describedby locking is absent.

The physical ingredients in the gain functional discussed While the coarse-grained model described in this section
so far do not include refractive effects such as dispersion ang admittedly somewhat artificial, it is an important object of
the Kerr nonlinearity, which are important in most laser sys-study as it provides the simplest example of a system in
tems[17]. When such terms are included @, it can no  which the phenomenon of passive mode-locktransition
longer be written as a gradient as in [6), and the invariant  occurs. In this sense it plays in the theory of passively mode-
measure is, in general, much more complicated. Neverthdecked laser a role similar to the one of the Ising model in
less, as pointed out in a previous wdis], p serves as the equilibrium statistical mechanics: It is a theoretical labora-
invariant measure also when dispersive effects are includedory which does not quantitatively approximate any real sys-
provided that a certain integrability condition, sometimestem, but exhibits in a mathematically simple setting the cor-
called the soliton condition, holds. Furthermore, the numerirect phenomenology of actual experiments.
cal studies of Ref[15] indicate that many of the qualitative
properties that results derived in the integrable case, where
the invariant measure is given by E§), persist even when D. The thermodynamic limit

the integrability condition ceases to hold. The purpose of this  oyr analysis relies crucially oN being very large. In the
work is to study in detail the integrable case. way we stated the problerl\ is the ratio between the laser
cavity length and the width of a pulse. In short-pulse laser
C. The coarse-grained model this is a natural large parameter, with values ranging from

We proceed to present a modified model, first sugges’[ei!lc_J2 to 1¢° depending on the cavity length and the band-
in Ref. [14], characterized by a simplified spectral profile, Width. TakingN—c and expanding in IM looks therefore
Namely, we replace the quadratic filtering of Bf), by a ~ Promising.
spectrum limited to a finite band, in which the gain acts !N order to follow such a procedure, a model that has a
equally on all modes. It is based on the following c,bserva_welI-_deflnedN—>oo limit |s_reqU|red. In particular, thermody—_
tion. The spectral filtering termy,|/(x)|? in H introduces namic averages of physical quantities should have a finite

correlations between the electric field in neighboring posi-N—* limit. Itis not difficult to see, however, that this does
tions in the cavity, counteracting the tendency of the satul0t hold in the statistical mechanics system of Egs.
1)—13). For example, theT=0 value of the intracavity

rable absorption to concentrate the power in an increasingl : <
thinner interval; the spectral filtering introduces a lengthPOWer7 is the minimum of
sc_ale over_wh_ich the electric field is.smooth. The essence of _ %ySNLPZ ~LU(P) (14)

this behavior is captured by assuming that the electric field

envelopey is constant on an interval of size comparable withwith respect tgP, which naively diverges wittN.

the correlation length, while neglecting all correlations be- In a given physical system whekeis finite and fixed, this
tweeny in different intervals. The functiow) is then repre- does not constitute a problem. However, here, for the pur-
sented on each interval by a sing®mple® degree of free- pose of theoretical analysis, we wish to approximate the
dom (see Fig. 1 large but finiteN model by afictitious model for whichN
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—o0. From Eq.(14) it is evident that this fictitious model is di, dlﬂ; T
not simply theN—co limit of the model defined by Egs. ZN(YS!T!P)ZJH —or © NATSPLy] - P), (17)
(1)~(13). n

If in Eq. (11) and hence also in Eq14) we make the \ith the reduced Hamiltonian
replacement

N

U(P) — NTuP), (15) HA[]= = o X [u*. (18)
we obtain a model wher@®, and other quantities as ex- i
plained below, have a finite thermodynamic limit. Aotual ~ The change of variableg,=|#,|* in Eq. (17) leads to the
system with giverN, U(P), and T is well-approximated by simpler form
the limit system withu(P)=U(P)/(NT). N

A renormalization of the system parameters such as the 7 TP :f d (75/2N'I')Enyﬁ6 1 -p

one presented here is quite often necessary in problems of N5 T.P) 1_,1[ Yo € Ng’lyn ’
statistical mechanics in order to obtain finite results in the 19
thermodynamic limit, and the meaning and practical use of (19)

renormalization in the general context is well understoodyhere they, integrations are from 0 te. Another change of

[22]. variablesy,— Py, leads to the useful scaling relation
However, a more fundamental difficulty remains: Due to - )
the nature of the mode-locking transition, the ratio of the Z\(ys T,P) = PP 22\ (ysPT), (20)

peak power, the maximal value ¢f;,|?, to the intracavity
power diverges likeN whenN is large. This means that only
one of these quantities can achieve a finite well-defined ther- Zy(y) = Zy(y 1, D).

modynamic limit.

In the renormalization scheme of Ed.5), which is used An important conclusion has already been reached: The ther-
in the present papeas well as in Ref[14]), the intracavity =~ modynamics depends on the single parametery,P?/T.
powerP and the phase transition “temperature” reach a wellE£quation(20) proves this in the fixed power scheme, while
defined limit asN— c«, while the peak power diverges lin- the equivalence of ensembles extends this to the general

where

early inN. A natural order parameter is therefore case.
1 14 In the rest of this paper we solve the statistical mechanics
M = (_22 <|¢n|4>> , (16) problem of the coarse grained mode. First, in Sec. lll a mean
N field theory is developed for the fixed-power ensemble,

) . ) . which is later shown to be exact in the thermodynamic limit.
where( ) stands for expectation with respect to the invariantrhan in Sec. IV we solve the statistical mechanics problem,
measure. In the ordered phasehas a finite nonzero ther- il in the fixed-power ensemble, by developing a uniform
modynamic limit, and in the disordered phalsktends to  asymptotic expansion ofy in inverse powers oK. Finally,
zero asN— . using the results of Sec. IV we calculate the partition func-

tion also in the variable-power ensemble in Sec. V, which
E. Fixed power ensemble completes the solution of the coarse-grained model.

Since the quartic term in the Hamiltoni&his unbounded
from below, the gain saturation tertd(P) is essential to ll. MEAN FIELD THEORY

ensure stability, preventing the system from cascading int0 e free energy in the coarse-grained model lends itself to

states with arbitrarily lowH. This reflects the well-known g mean field ana|y3is when formulated in Four(moda
fact that lasers owe their stability to gain saturatj@B,19.  space. In Fourier representation mode-locking manifests as

This is analogous to the role of the chemical potential in theordering of the phases of the various modes, see Fig 1. In-
grand-canonical ensemble in standard statistical mechanicgoducing the discrete Fourier transform

which limits the number of particles in the system.

An alternative approach is to suppose that the intracavity N i (UN)
power P has afixed value P, whose analogue in textbook o= 2 anf’ (21
statistical mechanics is the canonical ensemble where the el
number of particles is fixed. This is the scheme used in Refihe Hamiltonian(18) is expressed in terms of Fourier modes
[14]. One of the main results of the present work is anpy
equivalence of ensembles. The thermodynamics obtained in
the fixed- and variable-power ensembles are equivalent. The s . .
variable-power ensemble must be useHAj is not known. Hla]=- 2 > ~ Am, Am,3m,am,» (22)

. . . my—My+mg—my=pN

These issues are discussed in Sec. V.

In the fixed power ensemble there is no need to includevhere p is an integer(whose only possible values ape
the gain saturation term, and the partition function is defined=—-1,0,1,sincemy, ...,m, are between 1 ani). P is now
by given by
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v

P=2 lan?. (23 08

m 0.6

The main disadvantage of the Fourier space formulation is 0.4
that the nonlinear term becomes complicated and nonlocal. 0.2

Mean field theory overcomes this difficulty by assuming that 0.2 04
: . —02

the different modes are uncorrelated and characterized by a

common probability distribution functiop.«(a). When the

problem is formulated in Fourier space, the mean field ap:

proximation is quite plausible, since the interaction term in-

FIG. 2. The thermodynamic potenti&{y,y) as a function of
=M?2 for several values ofy ranging from 2 to 6 with higher
values ofy corresponding to lower curves. Curves with tgocal)

volves all the degrees of freedom. minima correspond to systems with a metastable state. The critical
In the mean field framework the free energy per degree Ofy (y") is by definition the one where the valuesféf-) at the two
freedom is minima are equal, which implies a first order phase transition.

_ logZ ¥ 4 o ] . .

F=- N 2—_|_N [{(@)mi|* + (10G P)mi» (24)  point in the cavity, because it assumes that the mode vari-

ables a,, are identically distributed, the mean field theory

where( ), stands for expectation value with respeciptg.  Yyields the correct thermodynamics. The reason is that inclu-
Gain saturation is included by demanding that sion of ordered configurations with different pulse positions

would contribute a term oD(log N) to the entropy, which is
(aPm=— (25) negligible in the thermodynamic limit, where the entropy is
N’ O(N).
. _ o o . _ We proceed to define a new thermodynamic potential
i.e., (P)mi=P. This is not enough in itself to satisfy the con f(y,y), wherey=M?2 and y=y,P2/T, which is the free en-

straint of fixed power, sincé fluctuates. However, in the . ! .
thermodynamic limit, which is always necessary for the va 9 for a given valueM. Using Eqs.(27) and (28) in Eq.

lidity of the mean field approximation, the fluctuations tend(24) itis found that
to zero, and Eq(25) is justified. y
Following the standard procedure of mean field calcula- flyy) =~ (Eyz+ log(1 —Y)>. (29
tions[22], py is found by minimizing the free energy subject
to the constraint, Eq(25). A necessary condition for the up to unimportant additive terms independentyofind M.
minimization ofF is stationarity with respect to variations of The free energyF for a giveny is the global minimum of
P, f(vy, -), and the abscissa of the minimum,is the square of
the order parameter.
——[F+\((|a®» - PIN)] The functionf of Eq. (29) has a single minimum fow
5 ( a) <4, aty,=0. The vanishing oM means that the phases are
= - 2 Ry TINZ(@)|Xa"Ya + [log p(a) + 1] + A|al2, not locked corresponding to the disordered, non-mode-
locked phase. Fory>4 there exists an additionglocal)
(26) minimum,y, >0, see Fig. 2, which corresponds to the mode-

where\ is a Lagrange multiplier. The solution of E@6)is ~ locked  state.  However,  for <dy<y =491
a Gaussian probability distribution function f(v.y1) > f(y.Y0), which means that the mode-locked state is
metastable, and the true equilibrium is still disordergd,
p(a)= — ~(la~(@)A10? 27) =Yo. At y=v the two minima exchange stability, and for all
7702 y> v the equilibrium state is mode locked, W|t|y1 as the
value of the order parametey. is the solution of the equa-

tion f(’)’,yo):f('}’yyl(’)’))i
* [ * | *
Vy (Vy #Ny -4

=] ~ [
([P mi = K@)mil* + o* = N’ (28) (Vy + \87 4 log 5 . (30

pmi_iS_therefore characterized by the single paraméter - .
=\N/P|(a),. From Eq.(28) one can see that=0|M2<1. traInnSIttIeOrrr]ns of tthetcr)]rlgn;al variablesgs, T, andP, the phase
WhenM =0 the phases of the modes are completely random, point is therefore
which means that in real space the power is uniformly dis- yspz
tributed. WherM >0 the modes are correlated which in real T =y =4.91. (31)
space means that a macroscopic fraction of the power resides
in the variableyy. M is therefore an order parameter, which In order to compare it to the result in R¢iL4], one should
can be shown to asymptotically coincide with the previousremember the difference in the modeling of spectral filtering
definition of the order parameter E(L.6). here and there. In Ref14] we imposed “Dirichlet” bound-

We note that although the present formulation of mearary conditions in the Fourier space, while here, the coarse
field theory allows only for pulse formation at a specific graining method actually induces periodic boundary con-

(a) and o are related by Eq.25) which implies
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sitions in Fourier space. Since the interaction in Fourier We will show that whenN is large the only significant
space is long ranged, this leads to a difference. The Hamileontribution to they integration in Eq(34) comes from the
tonian in Ref.[14] was identical to Eq(22), except thatp  vicinity of one or two values off which maximize the inte-
=0 only. The number of quartets witk=0 is 2/3 of their grand, one of which igy=0. The integration on other parts
number withp=-1,0,1. In themean field approximation of the interval is exponentially small iN and will be ne-
this would simply lead to a factor of 3/2 in the transition glected. The case of a single maximizing point will be shown

temperature, to correspond to invariant measures concentrated on configu-
5 rations where the amplitude of all degrees of freedom is
P g’y* ~7.4. (320  O(1), i.e., non-mode-locked, disordered configurations. This
T 2 happens for small enough When there are two maximizing

points the typical configurations are such that a finite fraction
Ref. [14]. (We note that the mode-locking transition was ©f the power is concentrated insingle degree of freedom,
specified in Ref[14] in terms of 1/.) The mean field theory While the amplitude of other degrees of freedom is again
presented here is better, since here we do not make the ansdyl)- These mode-locked configurations arise for large
of separating the modulus and anglepjg. Here we also end €nough values ofy. We show that these are the only two
up with the simple analytical expressia@9). Since the Possibilities.

Hamiltonian (22) is translation invariant in Fourier space,

mean field theory is more suitable for its analysis than for A. The disordered phase

that of its counterpart from Ref14]. We first tackle the case of small To this end we use the

In summary, it has been_demons;r_ateq in the mean f_|el ourier representation of the delta function in E#9) to
context that the mode locking transition is a standard firs e-expressZ by

order transition, accompanied by coexistence and metastable
configurations in its neighborhood. The mean field theory i 4z (fc

involves an uncontrolled approximation, which is hard to Zn(y) = ' ﬁe_z
i

This is very close to the result of,P?/T~7.7 obtained in

N
N dy éy/ZN)y2+(1/N)zy> ) (35)
0

justify rigorously. In the present work the justification will

ultimately follow from the real space analysis given in thegq, someCy=N. As long asCy= N, the right-hand side of

next section. . . Eq. (35) is independent ofCy. One can now expand the
Evidently, the transition condition depends, although noty agratic term in the exponential in a Taylor series keeping

greatly, on the spectral filtering scheme. Analysis of the parage first two terms, carry out theintegration, and then take
bolic filtering scheme, which we do not pursue here, yield%N_m giving

yet another value for the transition temperature, clog81p

and(32). dz N yN2\N
52 Z0(y) ~ f —.e‘Z(———y—) . (36)
IV. FIXED POWER FINITE N ANALYSIS 2

In this section we calculate an asymptotic expansion off he contour of integration must be deformed so as to avoid
the partition functiorzy(y, P) in decreasing powers of, the the singularity atz=0. A standard argument_ shows that the
number of degrees of freedom. All information pertaining tocontour should be moved to the left so that it crosses the real
the passive mode-locking transition is then obtainable in dine at a negative value. The integ(@6) can then be calcu-
standard manner. In particular, we show that the mean fiellft€d by pushing the contour through the singularity=0
calculations give the exact free energy. and then to Re=«. The exponential in the integrand makes

Our starting point is a recursive version of §49) for the integration at infinity vanish in the limit, leaving only

Cauchy’s theorem this evaluates to

2
Z\(vs, T,P) :f dyy e"2NNZ, nd dz o N\ (yN)"
ZN()’) ~N ;e ZE n (_ Z)N+2n
N-1 N-yn
X( N Yo T, N-1 P)- (33 ,};1NN+nN!

=> ,
| - | |

After using the scaling relation Eq20) and making a n NEIN=m!(N+2n)!

change of the integration variable we obtain a recursive,, using Stirling’s formula

equation forz, ' '

N N
N N-1 1 z _ e £ —ev e _ Z(O) 38
Zy(y) = N(—N - 1) fo dy é72N n(”) \J'TWNEH SN SN (39

(37

N Z(h?) certainly provides an asymptotic approximation of
X (1 —y)N‘ZZN_1< y——(1 —y)2>. (349  Z\(y) asy—0, but we shall show that it also serves as the
N-1 leading term ofZy(y) asN—« for all 0<y<+y". This is
This is the fundamental equation of the real space analysisachieved by showing that the recursive equati),
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. —v2Y = min— w2 — —v) -
20(y) ~ Ne J dye??V (1 )220 (1 -y)?) M)+ AL =YI] =i = e logld =) = ol

- y)%W? - log(1 - W)

eN “ e7(1 _Y)z )
=N ’ f dy 2eN[('y/Z)y +log(1-y)] (39)
J2uNJe C(1-y)

holds for y in this interval. Here and below the symbol —w) (45)
~ stands for asymptotic for largd. Consider the last inte- '

gral. WhenN— < the integrand becomes strongly peakedwhere we have set=W(1-y). It is straightforward to check
near the global minimuny(y) of f(y,y)=-[(y/2)y?*+log(1 that eithery or w must vanish at the minimum. For> y"
-y)]. The functionf is precisely the thermodynamic poten- there are two possibilitiesy=y;(y),w=0, and y=0,w

tial encountered in the context of the mean field approxima=y,(y), and the minimal value is the same in both cases.
tion, see Eq(29). As shown abovéSec. ll), y(y)=y,=0 The conclusion is that the integration receives two main
for y<y'. For these values of only the neighborhood of contributions, one from the neighborhood w0, and one
y=0 must be taken into account and the integral on the rightfrom the neighborhood of=y, which we denote by, and
hand side of Eq(39) is approximately I,, respectivelyl, is found by approximating the exponential
neary=0 and evaluating prefactors gt 0 giving

= min—2(y?+w?) +log(1 -y
YW 2

e 1 e
Ne'—=— f dy (1-y)N2~e—=~ 20, (40 1
v2mNJo V2N I ~ NeAy_;(y)e NDF f dy (1 —y)N-2e2N-DF (Y

which establishes 0

) e ~NF().
Z ~Z , <. 41 ~ e "\ 46
NY) ~ 20, v<v (41) -2y An() (46)
the assumption thady is subexponential ilN was used to
approximateAy_; ~ An.

For the calculation of; we need to evaluate near{1
-y(y)72. It follows from the properties of that this is always

Z(y) X strictly less thany’, whereF =~1. Therefore
(ph=2="2~2 (y<y), (42) o
Zn(y) YNe1-Y * @ —
_ ) ) ) 1~ _—eNF(y)f dy dN-DFE([(y -y)72]

also independent of in the leading order. In particular, the V2m(1 -y)? o
order parameteM from Eq. (16) equals zero, showing that
this is indeed a disordered configuration.

The thermodynamics now follow straightforwardly. For ex-
ample, the free energy per degree of freedomFig)
=(1/N)log Zy~1, independent ofy to leading order, and
the expectation value 94 in the invariant measure is

e}’(l _WZ
(1-Y)2VFA(y)

where F?(y)=#f(y,y(%)). Combining these results with
Eq. (44), we get a linear equation fdky whose solution is

g NF), (47)
B. The mode-locked phase

We turn now to the case> 7", wherey=y,>0. We can
no longer expect thaEN~Zf\(‘)), but the mean field calcula-

tions suggest that o) er1-9)? 1-2F'(y)
A Y) = o ; ’
Z(n) ~ An(n)e ™, (43 T A-VAF - F () -
where F(y)=f(y,y(y))-1 and Ay is subexponential irN. y>v. (48)
The results of the preceding section imply that therpis establishes Eq43), with explicit values forAy for all
asymptotic form(43) is valid for r< ¥, since theny=ys, £

andF=-1. Using Eq(34) for y> ', we presently show that " e find now thatF(y) is indeed the free energy, consis-

Eq. (43) is valid for all y# 4" and find explicit expressions tently with the mean field theory. Since
for Ay.
A'(y)

Substituting Eq.(43) in Eg. (34) gives the asymptotic
A(y)

equation (|* ~ 2(log Zy)' () =2——
er2y* 5 the order parameteM =(2F’'(y))Y* is nonzero fory>y",
dy —y An-1 A1 -y)°] showing that mode locking occurs for sugh Using the
definition of F we can calculate explicitly

-2NF'(y), (49

An(y)e N ~

w @ (=D (yy)+F(AL = y)A)] (44)

As before, the integration is concentrated near the maximal —2F' (y) =~ _f(7177)) == d,f(ny(y)=Y% (50)
points of the large exponential, i.e., the minigaa a function

of y) of f(y,y)+F[¥(1-y)?]. Recalling the definition oF  sincef is by definition stationary with respect yoaty. This
the minimization problem turns into means thaI\/I—\y, also in accordance with the mean field
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calculations. It is possible to show by calculating higher mo- <|yl*>
ments thati? is the power concentrated irsingledegree of

. O : 80
freedom. This result, which in physical terms means that
mode-locking results in a single pulse, can be traced to the 60
fact that the integral in Eq44) receives contributions only 40
from y, andy;. 20

; Y
C. The transition region 444648 5 5254

The analysis of the preceding section does not apply to FIG. 3. A comparison between the value of the order parameter
the case where is precisely equal to/'. For example, Eq. in the uniform(full line) and the nonuniforntbroken ling approxi-
(48) would imply thatAy(y") is infinite, since the derivative Mation as a function of the nonlinearity paramefefor a system
in F’(y) should be taken from below. More importantly, the with N=150 degrees of freg@om. Tbe nonuniform approximation
asymptotic approximation E@43) is not uniform inN near breaks down near the transition popt
v, because it neglects the contribution of the metastable

state. An asymptotic approximation f@ which is valid and ~ Strengthy,, the fixed total intracavity powe®, and the tem-
uniform for all y is peratureT. This allowed us to calculate the free energy per

degree of freedom, and we found that mode locking occurs
whenevery,P?/T is greater than a critical valug'.

However, in experimental situations the intracavity power
. . P is not fixed in advance. Rather it is a fluctuating quantity,
whereF (7)=f(7,y1(7)), andAy is given by Eq(48) replac-  whose mean valu® is determined by the saturable gain
ing everywherer by F* andy by y;. The uniform approxi-  function U [see Eq(11)]. The relation between the thermo-
mation is acontinuousfunction of v which reduces to the dynamics in the fixed-power ensemble analyzed above, and
nonuniform approximation fofy—y'|> 1/N. the variable-power ensemble which is the subject of this sec-

Observables in systems with a finite number of degrees ofion is quite similar to the one between the canonical and
freedom exhibit crossover behavior in the mOdE-lOCkinggrand canonical ensembles in statistical mechafi& In
transition, rather than the sharp, discontinuous dependengge latter case one defines the grand poterfialuN—F,
on parameters predicted in the thermodynamic limit. Whernwhere u=dF /4N is the chemical potential. An equivalent
the number of degrees of freedom is not too large, the crosshermodynamics is obtained after replacing the extensive
over is measurable and describable by the uniform approxivariable N, by the intensive variablg:.. Finite size correc-

N
e * _ *
Z\(y) ~ @=—=+A(n)e T, (51)
V27N

mation. For example, tions to the thermodynamics in the two ensembles are also
a 2 related, but not equivalent.
(1) ~ 2Lan(y) + N9y (97, (52 In this section we show in a similar spirit that thermody-
where namics with fixed and variable power is equivalent, and cal-
N culate the thermodynamic limit oP=(P) in the variable
gy ’e + (A?\‘)’(y)e‘NF*(V) power case. Itis quite_ straightfo_rward to gene_ralize the cal-
_ V2@N culations and to obtain subleading terms as in Sec. IV, but
ay= N . (53 this is not pursued here.
e’ >N + A" @ In the fixed power ensemble the free energy per degree of
vem freedomF of the HamiltonianHy which includes the satu-
and rable gain is related to the free enefgygalculated in Sec. IV
. by
A* e_NF ()
by = — Y . (54) 3 .
e L AN ) F(yT.P)=F(%P¥T) +log P+u(P).  (55)
V2aN

[Refer to Eqs(11) and(15) for the relevant definitionf We
For moderate values &, there is a significant interval iy now define the variable-power thermodynamic poterbials
below the transition wherd|¢{*) is much larger than its o Legendre transform &t
value in the thermodynamic limit. A comparison between the '
uniform and nonuniform approximations /% is shown

in Fig. 3. D(ys T, p) = umMP - F(ysT.P). (56)
i 2
V. THERMODYNAMICS WITH VARIABLE TOTAL The functionu has to grow faster thaR to ensure that the
POWER minimum in Eq.(56) is finite. We also require that is con-

vex to obtain a uniqgue minimum. Otherwisds arbitrary.
In the preceding section we developed a systematic ap- The thermodynamics is obtained frod through the
proximation scheme for the partition functi@ghof the pas- properties of the Legendre transform, the case of interest
sive mode-locking model as a function of the nonlinearitybeing u=0. The mean power,

046108-9



GAT, GORDON, AND FISCHER PHYSICAL REVIEW EO, 046108(2004)

P= aﬂcp(ys,T,o), (57 Another interesting thermodynamic quantity which can be
studied only in the variable power framework is the suscep-
tibility xy=P’(y) which measures the response of the intrac-
avity power to changes in the strength of the nonlinearity or

can be found from the definition E¢56) and the results of inverse noise power. Taking the derivative of Es8) shows

the preceding section; it is given implicitly by that
— ali
1+PU (P) - yy(12=0, (59) X:[[ﬂ—(ﬁ)]],. (60)
where as before=yP?/T. The order parameter is In the non-mode-locked regim@ is independent ofy and

x=0; wheny>0 and mode-locking occursg;’(y) is also
positive and it follows from the convexity af that the sus-
- ceptibility is strictly positive in mode-locked systems.
M4 = 270, ® =~ 2T, F =~ P?F'(y) = PX(y)?, (59

which, for a given mean powd?, is independenof the form
of u, and therefore also equal to the order parameter in the

fixed power ensemble. Moreover, the thermodynamics de- ACKNOWLEDGMENTS
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